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Abslracf - Recently an effective implementa- 
tion for wavelet transformed operators on three- 
dimensional data was derived by us. This novel 
data structure is used to transform a FDTD scheme 
with a fast WT into a multi-resolution version. 
Our approach combines the favorable characteris- 
tics of a FDTD scheme and the possibiiiity to re- 
solve the electromagnetic tieid on locally different 
resolutions. Since small wavelet coefticients are not 
updated during the time loop the six tieid compo- 
nents are computed within such a multi-scale grid 
instead of the single-resolution Yee grid of FDTD. 
Finally, resonator structures have been simulated 
to $valuate the efficiency and applicability of our 
approach. 

1. INTRODUCTION 

Since 1996 quite a lot of research has been done 
in the area of waveiet based field simulation tech- 
niques. The schemes can be categorized into two 
groups in terms of the general approach. The multi- 
resolution time-domain (MRTD) method, first pub- 
lished by Krumpholz and Katehi [l], is one category. 
This method usually starts with the coarsest resolution 
level and adds locally wavelets with higher resolutions. 
The so-called connection coefficients between the scal- 
ing function and all involved wavelets have to be de- 
termined before starting the simulation itself. Within 
the approach presented by Werthen and Wolff [2] (the 
other category) the connection coeff~icients r(i) (also 
called denvative stencil) are set up only for the finest 
resolution and then a fast wavelet-hmsform (WT) is 
used to obtain the coefficients for the different scales. 
Another important issue is the way to determine those 
coefficients. For the derivative operator, e.g. &[.I, 
one can either use the scaling function to evaluate 
r(i) = .fd(y +iAy + l/lAy)$$(y)dy (an analytical 
way to calculate r(i) was presented in [3]), or use the 
hrgher-order(H0) FDTD stencils directly. We will foi- 
low the later technique, since HO FDTD stencils with 
the same length as the scaling function versions cause 
a lower dispersion error [4]. As a first step a FDTD 

for the finest resolution is set up, afterwards a three- 
dimensional (3D) fast WT is applied to all involved 
operators. Since small waveiet co&Gents of the six 
tieid components are not updated within the leaplFog 
time loop, the EM field is represented within a grid 
with locally different rersolutions. One can choose the 
orderofthe FDTD scheme independently ofthe trans- 
form filter and vice versa that is another advantage 
of our technique. 

II. EFFECTIVE IMPLEMENTATION OP LlNEAR 

OPERATORS ON THREE-DIMENSIONAL WAVELET 
TRANSFORMED DATA 

The main issue for our technique was to find an ef- 
ficient data structsre for the involved wavelet trans- 
formed operators A [.I. Let us assume such a operator 
is applied to a 3D array, R, with waveiet coelfcients 
of a field component, e.g. E,(i,j, k). The result of 
this operation is another array, E = n@] (Rand L 
for right and left hand side). The tilde should in- 
dicate the transformed data. Since the operators in 
Maxwell’s equations and the W_T itself are both lin- 
ear, the transformed operator Ak] is linear as well. 
Therefore a wavelet coefficient of the array e with a 
index i z(i), is a linear combination of some g(?,,), 
i.e., z(i) = C, f,,k(?,J In our data stroctore the se- 

quencesf, and i, are stored for each i, Since every op- 
erator A b] has its own factor and vector lists, they are 
labeled by j{n}(c) and F{n}($ respectively. With 
these lists the above operation, L = &6], can be im- 
plemented in the following mathematical form: 

Z(i) = ~f”{n}(i)E(F”~L)(i)) vi (1) 
n 

Within the computer each operator, xk], consists of 
two 3D pointer arrays, f{x} and >{n}. f{n}(f) 
points to a sequence with the factors f,,{a}(i) to cal- 
culate z(i). In the other pointer array the element 
?{a]$) points to a list of vector indices, F,,{x}(f). 
These are the indices of the used co&Cents of the 
3D array, R. In Fig. 1 the data strwtore f{A} is 
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de@cted.-The other st~“ctme for the vector indices 
?{A} of R is similar. 

Fig. 1. Data structure to implement a linear operator i( 

III. WAVELE~ BASED SUB-GRIDDING SCHEME 

The cross section of the mi~~outrip line in Fig. 2 is 
used to explain the wavelet based sub-gridding scheme. 
In the upper part of the tigure a typical FDTD dis- 
cretization is displayed. To resolve the field compo- 
nents properly the “XT of a FDTD simulator should 
vary the resolution as depicted. Restrictively, for 
FDTD it is only possible to vary Ax along the x- 
direction, Ay along the y-direction and so on that 
has a few disadvantages. For OUT example, the iield 
is oversampled (in x-direction) within the ellipses in 
Fig. 2 (top). Another issue is that in some areas 
(especially in the ellipses) the difference between Ax 
and Au is relatively large, i.e., the derivative in one 
direction is approximated very well, but not in the 
other. The discretization in the lower part of Fig. 2 
is the favored one, since the above mentioned prob- 
lems do not occur here. In general, OUT approach can 
handle an arbitrary number, .J, of resolution levels 
(J = 3 in our example). The areas with different 

index labels the resolution level of the particular area. 
n re(l = {~l,~Cl*] = {{II:, Cl:}, {O:, @,O%]} is the res- 
olution list for our example. The two black squares 
with the finest resolution at the edges of the strip in 
the upper part of Fig. 3 are named ll: U 0: = 0’ 
in the list. For the intermediate resolution there are 
three members colored in dark grey. The light grey 
colored area does not need to be defined, since it is 
the rest of the whole computational domain. This 
area is discretized roughly, due to the smooth field 
distribution. In the lower part of Fig. 3 the cor- 
responding wavelet coefficients of the areas, n are 
&pic_ted. These coeffxcients are elements of the sets 
R3: 0’ contains all the wavelet coefficients of the ES- 
olution level j (j = 1 is the finest resolution and j = 3 
is the coarsest level). The coefficients to be updated 

Rg. 2. Typical FDTD discretization (top) and favored grid 

Fig. 3. &as wk with different resolutions, j, (top) and 
corresponding wavelkt coefficients in the sets ai (bottom) 

are called ocfive and t&y are detined in the so-called 
acfive coeficient list, RaCt = {f&,?. ,f&‘, P} = 

{{cl; ,.._ &J ,.: ,{a:-‘,: ,nGA},aJ}.’ I& 

is usually a small subset of the whole fi1 (expecially 
for the tine resolution levels). The ratio of the number 
of elements in the active coeff&nts list to the “urn- 
ber of all grid points is named grid ratio L&c For 
OUI example the active-grid list has the form: Cl,,; = 
tQ,,,QLt,W = tw:, . ..>%I. tfi:, ._. ,@~,W. 
The coefficients of fi3 belong to the coarsest resolu- 
tion level the base discretization. All coefficients of 



this scale are in fi,,, because at least this (base) dis- 
cretizaiion is needed in the whole computation domain 
without any refinement. The rest of the list is deter- 
mined by an algorithm that finds out which wavelet 
coeffXent in RJ needs to be updated to get a reso- 
lution j in the areas ai. If only the coeffXents in 

ii oet = {fia,, @,,, @} areupdated within the leapfrog 
time-stepping scheme, the electromagnetic field is cal- 
culated in the multi-resolution grid depicted in Fig. 2 
(bottom), according to our objective. 

IV. SIMULATIONS 

The algorithms mentioned in the previous sections 
have been implemented in the programming Iah- 
guage PYTHON (the numerical Python package is 
extensively used). During a predrocessing all oper- 
ators (derivative/material) are built up in the non- 
transformed domain with the data the simulator gets 
from the user via the GUI. The user can choose be- 
tween FDTD stencils from 2nd up to 6th order for the 
spatial derivatives. For the longer stencils the mirror 
principle is used to handle PECs and PMCs at the 
boundaries or inside the computational domain. De- 
pending on the number of resolution levels, J, a fast 
WT with J - 1 transformation steps is used to trans- 
form all involved operators. Since only PEC and PMC 
boundaries are implemented yet, resonator structures 
have been simulated to determine their resonant fre- 
quencies. The duration of the time domain simulations 
was always 10.000 Ai. The largest possible Courant 
number for a 2nd order FDTD instead ofthe lower one 
for MRTD was used in all simulations - except for the 
simulations with a 4th order accurate stencil. Here 
At was multiplied with 6/7, which yields the max- 
imum possible time step for 4th order schemes. In 
this paper the results of two cavities are presented. 
The first one is an air-tilled cavity with an dielectric 
block inside as depicted in Fig.4. The field component 
E, (i = h = Z,j,k) in Fig. 5 has been calculated within 
a multi-resolution grid with two different levels. The 
smooth surface plot at the interface air/dielectric in- 
dicates an area with a fine resolution. The rest is com- 
puted with the coarse resolution thus the surface plot 
is stepped. In this case a Haar wavelet has been used for 
the W T and a 2nd order stencil for the derivative. In 
table I the results for the dominant resonant frequency 
of the above resonator computed with different sten- 
cil orders and transform wavelets are summarized. In 
the 1st and 2nd column the frequency has been deter- 
mined by a 2nd and 4th order FDTD in an overall fine 
grid. In the 3rd and 4th column the result has been 
calculated within a multi-resolution grid transformed 
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with the Haar respectively the Daubechies wavelet 4. 
The frequency in the 4th case is exactly the same than 
in the fine grid, but just 66% of all wavelet coefficients 
have been updated. 

Fig. 4. Resonator with dielectric block (E, =4) 

Fig. 5. E. (hj, k) computed in the multi-resolution grid 

diel.block 1 FDTDz 1 FDTDl 1 Haar 1 Daub 

f. MHz1 1 50.0795 1 50.8053 1 51.3859 1 50.0795 
&,d I% ) 100.00 ] 100.00 1 53.15 1 65.71 

Table 1. Resonant frequency of cavity w/ dielectric block 

The 2nd resonator was an air-filled one with a metal 
plate inside as depicted in Fig. 6. Additionally, the 
fine grid is displayed with a dark grey area in the tig- 
we. These areas are located around the plate (espe- 
cially at its edge) and at the PEC boundaries, since 
the field distribution has a sharp bend (high resolu- 
tion wavelets are needed to represent that). The rest 
in light grey is discretized with the coarse grid, due to 
a smooth field. The field component E,(h, j, k) com- 
puted in the multi-resolution grid transformed with 



Haar wavelets is plotted in Fig. 7. As in the first ex- 
ample the areas with a tine resolution are represented 
by a smooth field plot in the vicinity of the plate and 
at the PEC-boundaries. The corresponding wavelet 
coefficients E,(h, j, k) have been depicted in Fig. 8. 
All coefficients in the coarse scale are needed for the 
base discretization. Non-zero coeffkients in the higher 
resolution levels are located around the plate, espe- 
cially at its edge, and at the PEC boundaries. The 
here not presented field plots for the FDTD 2nd or- 
der and the Daubechies case are similar to each other. 
Therefore the results for the resonant frequency given 
in table II are exactly the same. The value for the 
Haar wavelet is slightly lower. During our simulations 

Fs*ar (D,,OD) 

fig. 7. E,(h, j, k) computed in the multi-resolution grid 

met. plate 1 FDTDf ( Haar 1 Daub 
n MHz 1 135.2142 1 133.0334 I 135.2142 

! fiat I%] 1 100.00 / 49.05 1 62.72 

Fig. 8. Wavelet coeftkients &(h,j, k) of the above de- 

picted field component E, (h,j, k) 

we made the experience that the multi-resolution grid 
generated by Daubechies wavelets DZ yields very good 
results in terms of the field distribution compared to 
FDTD (fine grid) although only 60% of all co&- 
cients are updated. Whereas with the Haar wavelet 
the field distribution is just a good approximation and 
therefore the frequencies were slightly different. 

v. CoNCLUsloNs 

A FDTD scheme with a multi-resolution grid was pre- 
sented in this paper. The approach was based on a 
novel data structnre for operators on 3D field compo- 
nents. The fact that there is no explicit subgridding 
algorithmis the main advantageof our technique. The 
WT and inverse WT operators are transforming the 
FDTD scheme to a multi-resolution version, i.e., the 
complicated algorithm is implicitly done by them. 
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