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Abstract — Recently an effective implementa-
tion for wavelet transformed operators on three-
dimensional data was derived by us. This novel
data structure is used to transforma FDTD scheme
with a fast WT into a multi-resolution version.
Our approach combines the favorable characteris-
tics of a FDTD scheme and the possiblility to re-
solve the electromagnetic field on locally different
resolutions. Since smaill wavelet coefficients are not
updated during the time loop the six field compo-
nents are computed within such a multi-scale grid
instead of the single-resolution Yee grid of FDTD,
Finally, resonator structures have been simulated
to evaluate the efficiency and applicability of our
approach,

1. INTRODUCTION

Since 1996 quite a lot of research has been done
in the area of wavelet based field simulation tech-
niques. The schemes can be categorized into two
groups in terms of the general approach. The multi-
resolution time-domain (MRTD) method, first pub-
lished by Krumpholz and Katehi [1], is one category.
This method usually starts with the coarsest resolution
level and adds locally wavelets with higher resolutions.
The so-called connection coefficients between the scal-
ing function and ali involved wavelets have to be de-
termined before starting the simulation itself. Within
the approach presented by Werthen and Wolff [2] (the
other category) the connection coefficients (i) (also
called derivative stencil) are set up only for the finest
resolution and then a fast wavelet-transform (WT) is
used to obtain the coefficients for the different scales.
Another important issue is the way to determine those
coefficients. For the derivative operator, eg. Z[],
one can either use the scaling function to evaluate
r(i) = [y Fiag + 1/2Ay) q&(y)dy (an analytical
way to calculate r(2) was presented in [3]), or use the
higher-order (HQ) FDTD stencils directly. We will fol-
low the later technique, since HO FDTD stencils with
the same length as the scaling function versions cause
a lower dispersion error [4]. As a first step a FDTD

for the finest resolution is set up, afterwards a three-
dimensional (3D) fast WT is applied to all involved
operators. Since small wavelet coefficients of the six
field components are not updated within the leapfog
time loop, the EM field is represented within a grid
with locally different rersolutions. One can choose the
order of the FDTD scheme independently of the trans-
form filter and vice versa - that is another advantage
of our technique.

11. EFFECTIVE IMPLEMENTATION OF LINEAR
OPERATORS ON THREE-DIMENSIONAL WAVELET
TRANSFORMED DATA

The main issue for our technique was to find an ef-
ficlent data structure for the involved wavelet trans-
formed operators A []. Let us assume such a operator
is applied to a 3D array, R, with wavelet coefficients
of a field component, e.g. E(i,j, k). The result of
this operation is another array, I = A[R] (Rand L
for right and left hand side). The tilde should in-
dicate the transformed data, Since the operators in
Maxwell’s equations and the W T itself are both lin-
ear, the transformed operator A[] is linear as well.
Therefore a wavelet coefficient of the array L with a
index L), isa linear combination of some R,
ie, L) = Sntn R(7,)! In our data structure the se-
quences f, and 7, are stored for each 1. Since every op-
erator A [] has its own factor and vector lists, they are
labeled by f{A}(I) and F{AYND), respectively. With
these lists the above operation, L = A{R], can be im-
plemented in the following mathematical form:

L0) = Y MAND E(RAID) VI ()

Within the computer each operator, K[] consists of
two 3D pointer arrays, f{A} and r{A} I{K}(T)
points to a sequence with the factors f {A}({) to cal-
culate I{I). In the other pointer array the element
F{AY(T) points to a list of vector indices, 7 {A}{).
These are the indices of the used coefficients of the
3D array, R. In Fig. 1the data structure f{A} is
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degjcted The other structure for the vector indices
r{A} of R is similar.

i f{A} n factor lists Afactor pool
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Fig. 1. Data structure to implement a linear operator A

III. WAVELET BASED SuUB-GRIDDING SCHEME

The cross section of the microstrip line in Fig. 2 is
used to explain the wavelet based sub-gridding scheme.
In the upper part of the figure a typical FDTD dis-
cretization is displayed. To resolve the field compo-
nents properly the user of a FDTD simulator should
vary the resolution as depicted. Restrictively, for
FDTD it is only possible to vary Ax along the x-
direction, Ay along the y-direction and so on - that
has a few disadvantages. For our example, the field
is oversampled (in x-direction} within the ellipses in
Fig. 2 (top). Another issue is that in some areas
{especially in the ellipses) the difference between Ax
and Ay is relatively large, i.e., the derivative in one
direction is approximated very well, but not in the
other. The discretization in the lower part of Fig. 2
is the favored one, since the above mentioned prob-
lems de not occur here. In general our approach can
handle an arbitrary number, J, of resolution levels
{J = 3 in our example). The areas with different
resolutions are defined in a so- called resolutiJon last.

hqthefﬂwm far /=1y =
(et oAl s Ay R ugber
mdex labels the resolut1on level of the particular area.

Qres = {01, 02} = ({0}, 01}, 102,02, 02} } is the res-
olution list for our example. The two black squares
with the finest resolution at the edges of the strip in
the upper part of Fig. 3 are named Q1 U} = Q!
in the list. For the intermediate resclution there are
three members colored in dark grey. The light grey
colored area does not need to be defined, since it is
the rest of the whole computational domain. This
area is discretized roughly, due to the smooth field
distribution.  In the lower part of Fig. 3 the cor-
responding wavelet coefficients of the areas, It are
depicted. These coefficients are elements of the sets
17 ¥ contains all the wavelet coefficients of the res-
olution level § (§ = 1is the finest resolution and j =3
is the coarsest level). The coefficients to be updated
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Fig. 3. Areas Q‘,’, with different resolutions, j, (top) and
carresponding wavelet coefficients in the sets 7 (bottom)

are called active and they are defined in the so~ca.]led
active coefficient list, Qg = {Qm, S 1) ,ﬂ"’} =
{{Qia . lﬂllMl}'! ot :'[Q{ ! T ,Qifﬂ ‘} QJ} Quct
is usually a small subset of the whole {¥ {expecially
for the fine resolution levels). The ratio of the number
of eléments in the active coefficients list to the num-
ber of all grid points is named grid ratio @Wacy! For
our example the active—grid list has the form: Qm;g =
{Qact uct)! } = {{le . nﬂ} {le ‘e QQ} 93}
The coefﬁments of 8 belong to the coarsest resolu-
tion level - the base discretization, All coefficients of



this scale are in (2, because at least this (base) dis-
cretization is needed in the whole computation domain
without any refinement. The rest of the list is deter-
mined by an algorithm that finds out which wavelet
coefficient in 37 needs to be updated to get a reso-
lutlon jin the areas Q. K only the coefficients in

Qace = {ng, 2_,,$%} areupdated within the leapfrog
time-stepping scheme, the electromagnetic field is cal-
culated in the multi-resolution grid depicted in Fig, 2
{bottom), according to our objective,

IV. SIMULATIONS

The algorithms mentioned in the previous sections
have been implemented in the programming lan-
guage PYTHON (the numerical Python package, is’

extensively used). During a preprocessing all oper-
ators {derivative /material} are built up in the non-
transformed domain with the data the simulator gets
from the user via the GUI. The user can choose be-
tween FDTD stencils from 2nd up-to 6th order for the
spatial derivatives. For the longer stencils the mirror
principle is used to handle PECs and PMCs at the
boundaries or inside the computational domain. De-
pending on the number of resolution levels, J, a fast
WT with J — 1transformation steps is used to trans-
form all involved operators. Since only PEC and PMC
boundaries are implemented yet, resonator structures
have been simulated to determine their resonant fre-
quencies. The duration of the time domain simulations
was always 10.000 Az. The largest possible Courant
number for a 2nd order FDTD instead of the lower one
for MRTD was used in all simulations - except for the
simulations with a 4th order accurate stencil. Here
At was multiplied with 6/7, which yields the max-
imum possible time step for 4th-order schemes. In
this paper the results of two cavities are presented.

The first one is an dir-filled cavity with an dielectric .

block inside as depicted in Fig.4. The field component
E,{i=h=2,jk)in Fig. 5has been calculated within
a multi-resolution grid with two different levels. The
smooth surface plot .at the interface air/dielectric in-
dicates an area with a fine resolution. The rest is com-
puted with the coarse resolution - thus the surface plot
is stepped. In this case a Haar wavelet has been used for
the WT and a 2nd order stencil for the derivative. In
table I the results for the dominant resonant fréquency
of the above resonator computed with different sten-
cil orders and transform wavelets are summarized. In
the 1st and 2nd column the frequency has been deter-
mined by a 2nd and 4th order FDTD in an overall fine
grid. In the 3rd and 4th column the result has been
calculated within a multi-resolution grid transformed
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with the Haar respectively the Daubechies wavelet Dz.
The frequency in the 4th case is exactly the same than -
in the fine grid, but just 66% of all wave]et coefficients
have been updated. . -

excntan on’

vo]tage record

Fig. 4. Resonator with dielectric block (&, =4)

Haar (D;/OD)

Fig. 5, Ex(hj, k) computed in the multi-resolution grid,

diel.block | FDTD, | FDTD, | Haar Daub
fo [MHz! | 50.0795 | 50.8053 | 51.3859 | 50.0795
Fger [%] 100.00 100.00 53.15 65.71

Tabie 1. Resonant frequency of cavity w/ dielectric block

The 2nd resenator was an air-filled one with a metal
plate inside as depicted in Fig. 6. Additionally, the
fine grid is displayed with a dark grey area in the fig-
ure. These areas are located around the plate (espe-
cially at its edge) and at the PEC boundaries, since
the field distribution has a sharp bend (high resolu-
tion wavelets are needed to represent that). The rest
in light grey is discretized with the coarse grid, due to
a smooth field. The field component Ez(h, j, k) com-

puted in the multi-resolution grid transformed Wwith



metal plate

2m 2m

Fig. 6. Cavity w/ metal plate, arcas w/ fine resolution in
dark grey

Haar wavelets is plotted in Fig. 7. As in the first ex-
ample the areas with .a fine resolution are represented
by a smooth field plot in the vicinity of the plate and
at the PEC ~boundaries. The corresponding wavelet
coefficients E.(h, j, k) have been depicted in Fig. 8.
All coefficients in the coarse scale are needed for the
base discretization. Non-zero coefficients in the higher
resolution levels are located around the plate, espe-
cially at its edge, and at the PEC boundaries. The
here not presented field plots for the FDTD 2nd or-
der and the Daubechies case are similar to each other.
Therefore the results for the resonant frequency given
in table IT are exactly the same. The value for the
Haar wavelet is slightly lower. During our simulations

Haar (D1 /0D)

bz T.ﬁlnii-.-‘ ’

Haar (D1 /WD)

Fig. 8. Wavelet coefficients Ex(h,j, k) of the above de-
picted field component By (h,5, k) )

we made the experience that the multi-resolution grid
generated by Daubechies wavelets D, yields very good
results in terms of the field distribution compared to
FDTD (fine grid) - although only 60% of all coeffi-
cients are updated. Whereas with the Haar wavelet
the field distribution is just a good approximation and
therefore the frequencies were slightly different.

V. CONCLUSIONS

A FDTD scheme with a multi-resolution grid was pre-
sented in this paper. The approach was based on a
novel data structure for operators on 3D field compo-
nents, The fact that there is no explicit subgridding
algorithm is the main advantage of our technique. The
WT and inverse WT operators are transforming the
FDTD scheme to a multi-resolution version, i.e., the
complicated algorithm is implicitly done by them.
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